Eventually, we should realize that net-metering is an incentive (needed at first to jump-start the rooftop solar industry), and that retail-wholesale rates are fairer to the utility and community all around. Net metering is when you over-produce in the summer, and get those kWhs back in the winter for free–you haven’t paid the utility for the transport and “storage” of the energy. Retail-wholesale is when the utility pays you the same rate they pay other power plants for each kWh (usually 1/2 to 1/3 the rate on your bill), and whenever you consume from the grid (evenings, cloudy days, winter), you pay the normal cost. That way, you pay the utility the infrastructure cost for moving that energy around. We have that here now, and I think it’s the way forward. But now, what they want to do is curtail the homeowner solar: using smart meters (and smart inverters), they would automatically shut down your production (turn off your inverter) when they have too much electricity (from their own solar farms). You would have to agree to this in order to be grid-tied, and remember, when they shut down your inverter, you can’t even use your solar power yourself. I think this is purely for profit motives and has nothing to do with the purported technical reasons.
If you prefer to buy your solar energy system, solar loans can lower the up-front costs of the system. In most cases, monthly loan payments are smaller than a typical energy bill, which will help you save money from the start. Solar loans function the same way as home improvement loans, and some jurisdictions will offer subsidized solar energy loans with below-market interest rates, making solar even more affordable. New homeowners can add solar as part of their mortgage with loans available through the Federal Housing Administration and Fannie Mae, which allow borrowers to include financing for home improvements in the home’s purchase price. Buying a solar energy system makes you eligible for the Solar Investment Tax Credit, or ITC, which is a 30 percent federal tax credit on your system that is available through 2022. Learn more about the ITC.

To find the smaller contractors that typically offer lower prices, you’ll need to use an installer network like EnergySage. You can receive free quotes from vetted installers local to you when you register your property on our Solar Marketplace – homeowners who get 3 or more quotes can expect to save $5,000 to $10,000 on their solar panel installation.


Roof mounts are especially great since they're aesthetically pleasing and don't take up any space in your actual yard. There's a lot to consider with roof mounts, however. Most importantly, you'll need to think about the actual strength of your roof. If you live in an older house, you might have to get your roof redone before you can start bolting PV panels to it. Thirty panels weighs an awful lot, and it'd be a shame to have the whole thing come crashing down into your living room. Besides the strength of your roof, you'll need to make some decisions as to whether it's the most effective location.

How high is your tower? Hands down, the biggest mistake a homeowner can make with a small wind turbine is putting the turbine on too short of a tower. Like solar in the full sun with no shade, any renewable energy source must have good access to the fuel that drives the electricity. There is nearly 100% more power available in 10 MPH winds than 8 MPH winds.
I have spent my entire morning calculating and re-calculating wind turbines’ kW—their capacities and limits for generating electricity and energy in kilowatts per hour.  I consider this morning-long math marathon a mark of my emerging sophistication as a windophile, a crucial step in my apprenticeship as a “windsmith.”  Yes, Paul Gipe, author of the seminal text on wind power, dubbed the experts in all things windy “windsmiths.”  I like it; I want to become one; hence the protracted math homework on wind turbines’ “kW.”

Creating a solar panel out of broken re-used solar cell pieces. I ordered a pack of these from http://siliconsolar.com (3$ for a bagful of them - you can order here). In addition, you will need some conductive copper mesh (available at most art stores), glue gun + sticks, a multimeter and a conductive pen (or any sort of conductive brush-on - I got my conductive silver pen here). In this tutorial I will try to explain the best technique I found to connect these broken cells, in order to create your own CHEAP solar panel.
The ability of an off-grid inverter to surge to a higher level than its rated continuous output for a short duration to turn over the locked rotor of large loads like well pumps is critical. The inverter specifications that should be looked at are the Maximum Output Amps and the AC overload capability. If there are large loads a good number to look for is a five second surge capability of at least 1 ½ times the rated output of the inverter. If you have a deep well pump, the minimum requirement may be 3X the continuous run amps.
This larger sized rotor means it has a bigger wind catchment area, and a pretty low cut-in speed too. The cut-in speed (the speed of wind at which it starts producing energy) is just 5.6mph, so energy can be generated with relatively light winds. It also features an automatic breaking system, which protects the system against sudden gusts of wind that can cause damaging voltage surges.

The Interstate Turbine Advisory Council (ITAC) compiles a national unified list of small and mid-size wind turbines eligible for incentive funding from ITAC state and utility member programs. In addition to requiring certification for small wind turbines, ITAC reviews manufacturers' consumer and dealer services, marketing consistency with third-party testing, turbine operational history, turbine warranty, and manufacturers' response to technical problems, failures, and customer complaints. As a collaborative and common inventory of turbines, the unified list assures customers that tax- or rate-payer funding fully supports the installation of reliable and safe technology as well as enables improvements in program consistency, transparency, and benefits.[19]
Purchase This WG1KW 12V Wind Turbine Generator Wind Power System Today! Limited Quantities Available! Call 1-866-606-3991. Save money and the planet with the Solar Powered Generator 55 Amp Solar Power Generator with Faraday Cage! Dial 866-606-3991 or Order Online Now! Save money and the planet with the Solar Powered Generator 100 Amp 3000 Watt Solar Generator Just Plug and Play NOT A KIT! Dial 866-606-3991 or Order Online Now!
There are good incentives for the sale of excess electricity or for the purchase of wind turbines. Federal regulations (specifically, the Public Utility Regulatory Policies Act of 1978, or PURPA) require utilities to connect with and purchase power from small wind energy systems. However, you should contact your utility before connecting to its distribution lines to address any power quality and safety concerns.
Batteries are an important part of your solar kit installation if you plan on using your stored solar power when the sun goes down. Most solar kits don’t come with batteries, so you will have to choose the best battery for your needs. Luckily you can use the above formula to work out exactly what you need to keep your system powered up when you need it the most, at night.

With over 100% year-on-year growth in PV system installation, PV module makers dramatically increased their shipments of solar modules in 2010. They actively expanded their capacity and turned themselves into gigawatt GW players.[39] According to PVinsights, five of the top ten PV module companies in 2010 are GW players. Suntech, First Solar, Sharp, Yingli and Trina Solar are GW producers now, and most of them doubled their shipments in 2010.[40]
Designed carefully, this sleek looking model not only gives an overwhelming view to your dwelling but also complements the solar power. Plus, you can think of using it for a variety of locations- both urban and rural areas. In fact, the maker encourages you to use this device for charging batteries on your vessel, cabins, pavilion or recreational vehicle. Small nuts and screws are included with other essential segments.
These small wind turbines are perfect for someone who wants to experiment with wind energy or for a small cabin system. Comes complete with 20 feet of wire, ring terminals to go to your 12V battery and everything else you need to build your turbine. Starts charging at wind speeds of about 15 mph. Blocking diode is installed and no charge controller is required. Designed for medium wind speed areas. We can not accept returns for turbines damaged by high wind speeds. Output max. 2.25 amps @ max. 25V. Optimum wind speed: 15 mph
VAWT type turbines have no inherent advantage over HAWT type turbines. There, we have said it! VAWTs do not do any better in turbulent wind than HAWTs. Leaving the Savonius type VAWTs out (the type that looks like an oil drum cut in half – they have very poor efficiency anyway), both horizontal and vertical type turbines rely on an airfoil, a wing, to produce power. Airfoils simply do not work well in turbulent air; the wind needs to hit them at just the right angle and eddies wreak havoc. Couple that with the insistence of vertical axis turbine manufacturers to install their devices on very short towers or rooftops, and you get the picture. It will not work.
From a strictly financial perspective, I’m still not sold. The returns you mentioned (about 12%) are great but aren’t factoring in the loss of principle. I suppose the system will have value in the future for resale, but I have a hunch in ten years that setup will be laughably outdated. Not as outdated as no setup, however :) But it’s not all about the money, and I appreciate the clear info. It looks much more DIY than I thought.
We're guessing you wouldn't have come here if you didn't have a hunch they probably were. But just in case, let's review when solar systems are practical for homes and when they're not. If you own home or cabin and you have (or a tiny home who can be parked such that...) a roof that roughly points south (north if south of the equator) with no shading by trees, hills, other homes from around 9AM to 3PM, then you have some prime real estate for putting a solar system on.
“I don’t live in Colorado. How much juice will I get out of it where I live?” This part is fun: The National Renewable Energy Lab runs a great, free calculator called PVWatts that does it all for you: factoring in average weather and solar angles in your area, even allowing you to specify solar panels placed at any crazy angle you like. (In other words, your house doesn’t have to have a perfect South-facing roof).
Once you figure out where to put the long “lines” shown above, you measure them out and snap chalk lines right over top of your existing roof material. Then, use some sturdy 2.5″ lag bolts and washers to hold down the L-shaped brackets that come with the solar racking kit. Pre-drill each hole, and inject in some “Through the Roof” sealant with a normal caulk gun before driving in those bolts – this creates a permanent watertight seal. (There are also special brackets to accommodate different roof styles like tile and metal).

Another important part of a solar installation is meeting all of the necessary regulations. A professional installer can help you navigate the complicated details of ensuring that your equipment and install complies with all local, state, and national building and safety standards. You may need to get approval from a local electrical inspector, and your installer will also make sure you’re meeting all applicable electrical codes. You may need approvals from city planning departments. Your installer will also help you work with your insurance company to meet any special requirements they may have. Your power company will also have specific requirements, and working with a solar installer will help you get everything set up correctly. Although it’s not a regulation, you’ll also want to follow all of the requirements that your solar panel manufacturer has laid out in their warranty, so that if you ever need to replace a panel you know that you’ve met all of their guidelines for installation.
Stand-alone systems (systems not connected to the utility grid) require batteries to store excess power generated for use when the wind is calm. They also need a charge controller to keep the batteries from overcharging. Deep-cycle batteries, such as those used for golf carts, can discharge and recharge 80% of their capacity hundreds of times, which makes them a good option for remote renewable energy systems. Automotive batteries are shallow-cycle batteries and should not be used in renewable energy systems because of their short life in deep-cycling operations.[16]
Have you looked into heat-pump dryers? Maybe still too pricey. We had a gas dryer but switched to electric when we put in panels. Get one with several heat levels, so you can run it on low (or extra-low) and it draws a lot less, to match your panel output even on a cloudy day. Ideally, they will start to make smart appliances that look at your solar generation and modify their power consumption accordingly. But yes, there are nights when we just turn it on to get something dry and eat the cost.
Most homeowners are going to need to hire licensed solar installers to install even DIY kits. Not only are they the professionals, they know the ins and outs of these systems, and are specifically trained in their installation. Let’s face it, how comfortable are you with playing around with your home’s electricity? What’s the drawback of this? Most of cost you’re going to pay an installer is going to significantly decrease the actual amount of savings you will accrue from going the DIY route. Most licensed electricians will charge you $3,000 to $5,000 on average to install your home solar panels. But, wait – there’s more. Let’s assume after installation, you’re saving about $5,000 from buying a DIY kit. But, this is before applying the 30% federal tax credit, reducing your savings to about 10% overall (you’re going to save about $2100, on average, to purchase a DIY kit. Doesn’t seem like much considering all the steps involved in DIY systems.
The first step to planning your system is to evaluate rebate options and obtain permits. Your local power utility has rules you must follow when you hook the finished system to the grid, and building codes may also apply. In addition to federal incentives, states (and even some cities) offer rebates to help with the cost of the system. Understanding the local rules before you start will save you frustration later.

Great post, thank you. I have been on the fence on this one for the same reasons. I will get it done this year, though the ridiculous tariffs really chap my hide. I haven’t found a good green clothes drying strategy for Western Washington, so this will help cover electric dryer costs. Your post did not discuss the ‘harm’ identified by some utilities in having ‘too much’ daytime production. My assumption is that the grid tying incentives will phase out as more homes adopt solar and that a shift to a battery system may be required. At any rate, this is good stuff!
Solar PV cell technology converts radiation from the sun into electricity. The technology has been around for decades, and is pretty straightforward. How It Works is specially-designed solar cells, containing a semi-conducting material such as silicon, are located on the roof or ground of your home or cabin. When sunlight hits the cells, it excites the electrons within the silicon, creating an electric field across the cell's sheet layers and causing a flow of electricity.

Purchase This Brand New C60 Charge Controller and Watt Meter Combo Package Today! Limited Quantities Available! Call 1-866-606-3991. Purchase This 10-15 Watt 12V Wind Turbine Power Generator Today! Limited Quantities Available! Call 1-866-606-3991. Purchase This Brand New 10 Ft 1 1/2" Wind Generator Tower Wind Turbine Pole Kit Today! Limited Quantities Available! Call 1-866-606-3991.
As you may be aware, the Federal government will provide you with a hefty grant to reward you for being a part of the transition to renewable energy. Just how hefty, you ask? The incentive program will cover 30% of your costs. Not bad, right? For more free money, be sure to check out North Carolina State University's DSIRE. Many states, towns, and utility companies provide additional grants, tax breaks, buyback programs, and low-interest loans to help offset the costs of solar energy. DSIRE maintains an up-to-date list of these programs.

It is unfortunate to see how well marketing for small wind turbines is working: I often see people post questions on forums, where they are looking for a wind turbine “with a low cut-in wind speed”. Depending on whom you ask, the cut-in wind speed is either the wind speed where the turbine starts turning, or the wind speed where it starts to produce some power. For most wind turbines it is around 2.5 – 3.5 m/s (5.5 – 8 mph), and it is an utterly meaningless parameter.
-----BEGIN PUBLIC KEY----- MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAyk1vz4Wn7Ra6rTT0TjER CFYBuCPC2POjFupKCMVbqmn4eyUX/7IP5JFNOFjDhpkvOUmVdhC+PWHL5mqW61V7 eHNXzVtiQfloc6nFRNmO/QvCjXkn2iy+QSkVi87jPvnlVv/Qju42rRhRt6R2l2Yl MxPgRgd37QSA5JzHHxEgci4In6HuXCsF4Zk2B7g4H2X02N6ZZWkvHTTbqPUHqXi7 XwxDhiTKkojXRJ5IgNYFv3QyH+Hp28gygaUyXn6da+FXXYLrdhtzayHByzTh+bgM nwmbiM3I4xHXAXd4chCM2I42Xlc3naqNXKOTdjjyLyNF/QICeaMvPMQ1z6zqMkTO NwIDAQAB -----END PUBLIC KEY-----
The map above gives a great indication of general areas that receive a good amount of wind, but the immediate surroundings are vitally important too. A wind turbine must be able to function unimpeded from trees, hills, buildings or anything else that might affect the wind. Good sites for wind turbines would be hilltops, plains, fields, and ocean fronts. Anything close to a forest, city, or valley would run the risk of not getting a strong enough wind.
The largest challenge for photovoltaic technology is said to be the purchase price per watt of electricity produced, new materials and manufacturing techniques continue to improve the price to power performance. The problem resides in the enormous activation energy that must be overcome for a photon to excite an electron for harvesting purposes. Advancements in photovoltaic technologies have brought about the process of "doping" the silicon substrate to lower the activation energy thereby making the panel more efficient in converting photons to retrievable electrons.[25]
Combiner / circuit breaker box is a key piece of equipment that begins to bring the pieces of equipment together that allows you to generate electricity. We use almost exclusively Midnite Solar and OutBack combiners and breakers because they are safe, durable and easy to wire. NEC (National Electrical Code) says that each series of strings of panels are to be wired to it's own circuit breaker. Midnite Solar and OutBack combiner boxes make this task easy providing a breaker to turn off and on each string for any purpose. The combiner box is usually located directly under a ground mount array.
How accurate are these numbers? This is the energy production a good horizontal-axis wind turbine can reach, if installed at the perfect site and height. These are the upper limit though, if your turbine produces anywhere near the number predicted by this table you should be doing your happy-dance! Most small wind turbine installations underperform significantly, in fact, the average seems to be about half of the predicted energy production (and many do not even reach that). There can be many reasons for the performance shortfall; poor site selection,  with more turbulent air than expected often has much to do with it. The reports in the ‘real world’ section following below illustrate this point. Many small wind turbines do not reach 30% overall efficiency, some are close to 0% (this is no joke!), so these numbers have only one direction to go. For off-grid battery charging wind turbines you should deduct 20 – 30% of the predicted numbers, due to the lower efficiency of a turbine tied to batteries, and the losses involved in charging batteries.

That last one refers to net-metering, the practice by which utilities reimburse rooftop solar at the same rate as they charge users for electricity. This is politically fraught territory: some states, like Nevada, have adopted policies where utilities pay less for surplus solar, which makes it harder to recoup the cost of the installation. For a handy guide to where each state stands on this, check out this solar scorecard.
I bought a diy solar panel guide before starting my project.  The one I chose is called Green DIY Energy.  In order to help people out, I bought several of the most popular guides and reviewed each of then.  Green DIY Energy is the most comprehensive with over 200 pages of ebooks and 6 DVD quality videos that cover the entire build process from start to finish.  I especially liked the videos.  When I built my first solar panel I followed along with the videos and at the end of the weekend, my solar panel was finished.
Welcome to the solar world, Pete! We put our panels on in 2015 and have been very pleased with how they have performed in the almost 3 years they’ve been up there! I really think this is the future, but we need to keep advocating for them in some areas because power companies are sometimes actively hostile towards residential solar and laws should change and open up to make it an even smarter investment for people and the environment.
There are two types of towers: self-supporting (free-standing) and guyed. Guyed towers, which are the least expensive, can consist of lattice sections, pipe, or tubing (depending on the design); supporting guy wires; and the foundation. They are easier to install than self-supporting towers. However, because the guy radius must be one-half to three-quarters of the tower height, guyed towers require space to accommodate them. Although tilt-down towers are more expensive, they offer the consumer an easy way to perform maintenance on smaller lightweight turbines (usually 5 kW or smaller). Tilt-down towers can also be lowered to the ground during hurricanes and other hazardous weather conditions. Aluminum towers are prone to cracking and should be avoided. Most turbine manufacturers provide wind energy system packages that include a range of tower options.[15]
Some photovoltaic systems, such as rooftop installations, can supply power directly to an electricity user. In these cases, the installation can be competitive when the output cost matches the price at which the user pays for his electricity consumption. This situation is sometimes called 'retail grid parity', 'socket parity' or 'dynamic grid parity'.[50] Research carried out by UN-Energy in 2012 suggests areas of sunny countries with high electricity prices, such as Italy, Spain and Australia, and areas using diesel generators, have reached retail grid parity.[4]
Solar panels come in two types; monocrystalline and polycrystalline. Where home or cabin owner wants their solar installation to be grid tied, off-grid or emergency solar backup each of those systems starts with a solar panel selection. Monocrystalline solar panels are generally higher efficiency, but they tend to derate faster in hotter conditions. Polycrystalline are sometimes considered a better choice for warmer climates, but the truth is that either panel type is so similar the differences are relatively not worth comparing.
Since the energy output to the loads must be balanced by the energy input from your solar panels and wind turbine, we need to calculate your daily charge requirement in amp hours as that number will come in handy later. Take your total daily watt hours x 20% (rule of thumb) to account for losses in inverter, circuits and wire transfer. Now divide by the system voltage you chose based on the previous section and write this number down. This is the charge in amp hours your solar panels will have to provide each day to meet your load requirements you have set. Example 5,000 watts daily load total X 20% = 6,000 watts / 48 volt system = 125 amp hours that will need to be generated. Example #2, 5,000 watts daily load total X 20% = 6,000 watts / 24 volt system = 250 amp hours that will need to be generated.
It is pretty well known at this point that Mr. Money Mustache is enamored with solar power. Besides the obvious Sci-Fi coolness of it (Electricity, Satellites, Futuristic Robots!) and the eco-friendliness of it (energy with zero noise or pollution), in the last five years the money side of things has finally matured, so that solar power is now the cheapest way to make electricity – even before you account for the added bonus of any available subsidies and the benefits of pollution-free living.
Usually, the solar power systems uses 12 volt batteries, however Solar panels can deliver far more voltage than is required to charge the batteries. By, in essence, converting the excess voltage into amps, the charge voltage can be kept at an optimal level while the time required to fully charge the batteries is reduced. This allows the solar power system to operate optimally at all times.
×